In this study, the usability of Real-Time Precise Point Positioning (RT-PPP) technique, which is one of the satellite-based positioning methods, in the production of 3-Dimensional (3D) position information required for all kinds of studies to be carried out by different disciplines in the Antarctica continent, where there are almost 100 science bases of around 30 countries including Turkey, was discussed. As a data source, the nearest GNSS station to the Horseshoe island, where the Turkish Antarctic Science Base will be established, OHI300ATA was chosen because it is one of the IGS-MGEX Real Time Service (RTS) network points which makes continuous observations and broadcasts in real-time from the internet. In order to evaluate the performance of the RT-PPP technique, the real-time coordinates of the reference station in each epoch were determined for different satellite configurations (GPS; GPS+GLONASS; GPS+GLONASS+Galileo GPS+GLONASS+Galileo+BDS) by using multi-GNSS real-time correction products produced by German DLR and French CNES institutions, which are analysis centers working within the scope of the IGS-MGEX RTS project. Thus, the effects of both different GNSS satellite systems and different correction products (precise satellite orbit and clock corrections) taken from two different analysis centers of IGS on RT-PPP solutions were investigated. As a result of the study, it was observed that GNSS satellite systems added to the RT-PPP solution sequentially, improved the RT-PPP solution accuracy and shortened the convergence time compared to the use of GPS-only observations. In addition, it has been revealed that the performance of the RT-PPP technique also depends on the IGS products used for the solution. According to all these findings, it was possible to determine real-time 2D horizontal position and height with a cm to two dm accuracy, respectively in the Antarctica continent by using the multi-GNSS RT-PPP technique, after convergence times ranging from about 10-60 minutes depending on the correction products of the IGS Analysis Centers used in the solution and the satellite configuration.