Performance Analysis of Precise Point Positioning (PPP) Technique in Antarctica Continent

Abstract

It is of great importance to observe the climate changes that occur in the polar regions with the effect of global warming, to better reveal the atmospheric physics, and to continuously monitor the deformations and tectonic movements in the glaciers. In this context, GNSS (Global Navigation Satellite System) and remote sensing satellites are widely used in the monitoring of global disasters. As one of the most fundamental components of GNSS, GPS satellites have inclined orbits 55 with respect to the equator, therefore around the zenith direction the satellite observations are limited in the polar regions. Also, the daylight duration and weather conditions vary greatly in the polar regions in summer and winter times. For these reasons, eliminating the effects of atmospheric errors on GPS measurements in polar regions is much more crucial. In this study, the performance of PPP technique in Antarctica Continent was investigated. For this purpose, the daily observations with 30-second sampling rates from different seasons belong to HUGO and HOWE continuous GPS stations of UNAVCO in the Continent, were processed with static and kinematic PPP methods. In the study, Canadian Spatial Reference System-Precise Point Positioning (CSRS-PPP) online service, and RTKLIB, an open source academic software, were used. In results of the study, it is seen that the coordinates obtained with PPP technique have differences with the known coordinates of the points obtained from the AUSPOS online relative positioning service are in millimeter for static solutions and in centimeter for kinematic solutions, respectively.

Publication
Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20(5)
Bilal Mutlu
Bilal Mutlu
Research Assistant

My research interests include satellite geodesy, and natural hazard monitoring with geosensors. For more detailed information you can take a look at the summary of my Msc Thesis.